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@ Supervised learning (classification, ...)
@ Unsupervised learning (clustering, ...)
@ Semi-supervised learning




Notes about Machine Learning

We won't talk really about the theory. But:
@ Pretreatment is very important.
@ Usually, big tradeoff between speed and efficiency

In Process Scheduling, those factors will be limiting.
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What is Process Scheduling ? E
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There is many well-known scheduling algorithms. For analy
example: Conclusion

@ First In, First Out
@ Round-Robin (fixed time unit, processes in a circle)




Main concerns

A scheduler has mainly 3 metrics: throughput, latency
and fairness. We can simplify them (in practice) by:

@ Speed (how much time the scheduler itself uses,
number of context-switching, ...)

@ Fairness (giving equal CPU time to each process)
@ Reactivity (are interactive processes given any
advantages ?)
A scheduler is complicated. Let’s optimize one using ML !
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Inner workings of CFS E
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e Stands for Completely Fair Scheduler definitions
@ Scheduler of Linux since 2.6.23 Rl

Adva nvenients

@ Just an RB-tree with elements indexed by the
runtime of the process.

What can we do ?
Results and

analysis

@ Straightforward algorithm: just take the minimum of
the tree.

Conclusion

CFS in Linux kernel is actually more complicated
(handling Real-Time tasks, nice values, ...)




Why CFS ?

@ Quite simple and works really well
@ Most familiar (I implemented one in mikro)
@ Already efficient. I wanted to see what ML could do.
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Advantages/Inconvenients

v/ Very simple to understand
v/ Works really well in general cases

v/ No real corner cases

X A little light on the handling of interactive processes.
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@ Restricted to supervised learning (classification and
regression mainly)

@ Scheduler must be as fast as possible. Its ML
components too.

@ Avoiding complex code in the kernel is often a good
idea.

Results and
analysis

Conclusion

— precomputed model/profile for each processes
— no complex methods, results will be mitigated
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Ojective: reducing the number of context switchs:
@ A process time quantum should ideally not finish
(process going to sleep)
@ An estimation of the next quantum would help el
@ Based on the N lasts quantums :1::;“1
@ Be careful not to be too unfair

Note: Many other objectives were possible...




Actual implementation

@ Proof of Concept

@ One using Taylor’s Theorem and one using a
classifier

@ Need to extract real runtime quantums and to create
profiles
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¢ The sequence of quantums can be seen as a function Introduction and
Of the time definitions

@ Taylor’s theorem gives an approximation of a
function on a point given its derivatives

Our target: CFS

Applying ML to the CFS

@ Discrete derivation is only substraction R

analysi

— an approximation of the next quantum is: Conclusion

fle+1)=f(x)+f (x - 1)+f//

This method is simple and fast, but not very precise.
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Naive Bayes Classifier using the last 4 quantums: Benoit Zanotti

@ It is the best (found) compromise between speed and et
results e —

@ Parameters and output are range of time, not the
actual values

@ Based on Bayes’ theorem. Outputs the labels with Results and
most probability analysis

Conclusion

@ Only 4 multiplications are needed for each label
(there is 10 of them).

@ Using bit manipulation, we can avoid any
conditionals

— it is fast, but clearly not the most accurate
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perf

perf
@ Performance analysis tools for Linux
@ Based on kernel-based performance counters

@ Can be used to extract many scheduling stats
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@ Linux Scheduler Simulator (in userland...)

What can we do ?
v/ Easy to use (cycle of development, debugging, ...)
and fast

v/ Can replay records from perf

Conclusion

X Hard to quantify how much time is used by the
scheduler
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Methodology of the tests E
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@ Use perf to extract records and datasets
@ Use WEKA to compute profiles for each process
@ Test using vanilla/modified linsched to see the gain

@ Time the tests of vanilla/modified linsched to j
estimate how costly each method is Condon
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Analysis

e CFSis already quite good
@ ML results are positive but very limited

@ More complex pretreatment/ML techniques would
yield better results... at which cost ?
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It was only one idea on one objective.
Introduction and

Using ML in scheduling is hard, because of the definitions
speed/results tradeoff et

Difficulties for a real kernel integration (passing the
models, limiting abuses, ...)

Basic rule in scheduling: "Simpler is Better" Conclision

Another idea: run a (kernel ?) process every X hours
to compute new profiles...

o K. Kumar Pusukuri, A. Negi, Applying machine
learning techniques to improve Linux process scheduling,
Dec. 2005.




Questions ?

. Questions ?
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